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ABSTRACT

Syntheses of 2-substituted furo[3,2-b]pyridines and furo[3,2-h]quinolines have been achieved for the first time in the solid-phase mode. The
central enabling steps involved concomitant deprotection/cyclization promoted by the mild base K2CO3. Reactions were monitored “in situ”
in real time by a variety of spectroscopic techniques, which allowed full and accurate control of progress in these syntheses.

Completion of the Human Genome Program (HGP) in April
2003, along with accumulating DNA sequence information
from the genomes of an exponentially increasing number of
microbial, plant, or animal species, has led to a correspond-
ingly large number of protein targets that must be matched
with effective and selective organic molecule ligands identi-
fied through high-throughput screening.1 The demand for
potential ligands may best be met by combinatorial synthesis
onto diverse scaffolds, as expedited by a solid-phase mode
(SPOS) that has the advantages of being amenable to
automation and potentially giving products suitable for
further testing without going through time-consuming inter-
mediate purification steps.2

The focus of this report is to describe solid-phase syntheses
of furo[3,2-b]pyridines and furo[3,2-h]quinolines. The former
heterocycle is rarely found in nature,3 yet its heteroaromatic
unit is the nucleus of the pharmacophores of potent HIV
protease inhibitors such as L-754,3944 and PNU-142721.5

The latter tricyclic system has been encountered even fewer
times.6 Precedents for solution syntheses in these families
are relatively sparse,7 and to the best of our knowledge, their
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solid-phase syntheses have not been described previously.8

A further feature of the present study is the monitoring of
all reactions “in situ” in real time, using FT-IR (KBr pellets),
13C gel-phase NMR, and13C MAS NMR; this allowed full
and accurate control of progress in these syntheses.9

The enabling step of our overall process involves smooth
base-promoted deprotection, which is followed directly by
cyclization without a requirement for further catalysis
(Scheme 1). Cyclization is favored with electron-withdrawing

substituents in the aromatic ring that includes the nucleophilic
phenoxide moiety.

In the first stage of this research, hydroxymethyl polysty-
rene resin (Merrifield-OH; 0.98 mmol/g) was used as the
solid support, due to its stability and robustness under
different conditions. The first synthetic step (Scheme 2)
involved incorporation of 5-iodo-2-methoxyphenol1 onto
the resin under classic Mitsunobu conditions,10 which were
monitored by IR with the reaction endpoint indicated by
disappearance of hydroxyl stretches (3450 and 3580 cm-1).
Loading of the first building block was quantitative, within
the limit of detection of IR.

Next, a Sonogashira cross-coupling reaction11 between the
anchored iodophenol2 and 3-acetoxy-2-ethynylpyridine
A12,13established an aryl-pyridine acetylene3.14 IR monitor-
ing revealed two intense signals (1765 and 2200 cm-1),
corresponding to the appearance, respectively, of resin-bound
acetoxy and acetylene functions. Gel-phase13C NMR spectra
showed the expected chemical shifts corresponding to the
entire molecule being anchored to the resin. No additional

signals of any consequence were observed, suggesting that
within the limits of the monitoring technique, the reaction
had produced predominantly the desired product without
significant side reactions. In particular, premature loss of an
O-acetoxy protecting group in the presence of Pd(0) has been
mentioned elsewhere15 but does not appear to be occurring
in the present reactions.

Given our objective to establish the central furan ring by
addition of a phenol (or phenoxide) moiety to a triple bond
(Scheme 1), several trials were initiated to optimize deacety-
lation. Acidic conditions were avoided, due to the known
lability of alkynes. Of a number of bases tried under a variety
of conditions (solvent, temperatures, time), LiOH was
abandoned due to a complex pattern of products noted upon
gel-phase13C NMR, whereas NaHCO3 was found to be
ineffective [only starting material was detected by the same
technique]. Instead, we treated the resin with 0.5 M 18-
crown-6 in DMF-H2O (19:1), in the presence of an excess
(saturating amount) of K2CO3, at 60 °C for 48 h.16 The
absence of IR stretches at 1765 and 2200 cm-1, and the
disappearance of methyl and carbonyl signals in the gel-
phase13C NMR, confirmed the loss of the acetate group. In
addition, triple-bond signals at 94.9 and 82.9 ppm had
disappeared, and a new signal at 101.0 ppm was attributed
to the formation of a resin-bound furan ring. Finally,
treatment of the resin intermediate4 with the Lewis acid
AlCl3 (10 equiv) in dry CH2Cl2 gave rather high-quality crude
product (Figure 1); after semipreparative HPLC, pure 2-(3-
hydroxy-4-methoxyphenyl)furo[3,2-b]pyridine (5) was ob-
tained in 45% overall yield based on the original loading of
the starting Merrifield-OH resin.

In a second stage of this research, we prepared on a parallel
synthesizer a pilot library, to gain a better appreciation of
the scope and limitations of this substituted furan-preparing
solid-phase methodology. In one dimension, activated as well
as deactivated iodophenols were tried, and the second
dimension explored acetylenes17 linked to three different
aromatic nuclei (pyridine, quinoline, aniline) [see Table 1].
While the hydroxyl substituents in the pyridine and quinoline
seriesA andB were protected as theirO-acetoxy derivatives
as with the earlier work (Scheme 2), the aromaticortho-

Scheme 1. Deprotection/Cyclization Step

Scheme 2
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amino group in seriesC was blocked by treatment with
trifluoroacetic anhydride in anticipation of a later base-
promoted deprotection step.

Another aspect of this second-stage research was to replace
the Merrifield-OH resin byp-alkoxybenzyl alcohol (Wang)
resin, in anticipation of more facile final cleavage. Wang

trichloroacetimidate18 resin6 (maximum loading 0.82 mmol/
g) was readily loaded, in quantitative fashion, with each of
the three iodophenol building blocks (Scheme 3). Completion
of reactions was verified by disappearance of strong stretches
at 3339 cm-1 (N-H) and 1662 cm-1 (CdN). Sonogashira
cross-coupling reactions using each of three protected
acetylene derivatives provided the anticipated resin-bound
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Figure 1. HPLC-MS of crude 2-(3-hydroxy-4-methoxyphenyl)
furo[3,2-b]pyridine5. (A) Total ion current. (B) UV (318 nm) trace.
(C) APCI-MS spectrum of the main component (tR ) 3.9 min)

Table 1. Exploratory Library to Generalize Chemistry of
Scheme 2a

a Building blocks are on the top row and left column, outside of the
bold solid rules. Isolated yields after purification are indicated, along with
the structures of each product for which the chemistry was successful. All
results, including those relating to a ring C-alkylation side reaction as
described in the text and ref 19, were confirmed by both HPLC-MS and
1H NMR analyses [sometimes adding heterocorreletion analysis (gHSQC
and gHMBC)]. The failures of the right column are discussed in the text.

Scheme 3
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bis(aryl)acetylenes, as evidenced by IR. The deprotection/
cyclization steps that followed were monitored by IR and
allowed to proceed until the characteristic bands (1765 and
2200 cm-1) were entirely abolished. Organic products were
released by treatments of the resins with TFA-CH2Cl2
(1:9) (2× 2 h). The combined filtrates were combined with
5% (v/v) H2O and concentrated to dryness in vacuo.

Several of the library results were as hoped for, with very
respectable crude purities and final yields (Table 1). How-
ever, the chemistry did not work efficiently in seriesC, which
usedortho-ethynyltrifluoroacetanilide as a building block;
crude material obtained after cleavage was in each case a
complicated mixture. We attribute the differential results to
the fact that the aniline substituent donates electrons into
the triple bond, whereas theπ-deficient pyridine or chloro-
quinoline rings withdraw electrons.

One class of byproducts was observed by HPLC-MS of
the crude materials19 and represents the principal yield-
diminishing alternative to formation of desired products in
seriesA andB. The undesired structures incorporate an extra
p-hydroxybenzyl moiety (mass 106) derived from the Wang
resin linker. Intramolecular rearrangement of a benzylic
carbocation with resultant C-ortho-alkylation of aromatic
rings that are activated as phenols is a well-known side
reaction from peptide chemistry20 and, in the present context,
relates to our recently described “linker leakage” problem.21

In summary, we have described an easy and efficient
methodology for synthesis of substituted furan-condensed
derivatives on hydroxypolystyrene-type solid supports. The
protocol should be readily generalizable for the rapid
synthesis of large libraries of related compounds, especially

in view of the relatively mild conditions for cyclization that
make it possible to accommodate a greater range of otherwise
labile diversity elements.
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